Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia

نویسندگان

  • Attila J. Bergou
  • Sharon M. Swartz
  • Hamid Vejdani
  • Daniel K. Riskin
  • Lauren Reimnitz
  • Gabriel Taubin
  • Kenneth S. Breuer
  • Graham K Taylor
چکیده

The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats' wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bat wing sensors support flight control.

Bats are the only mammals capable of powered flight, and they perform impressive aerial maneuvers like tight turns, hovering, and perching upside down. The bat wing contains five digits, and its specialized membrane is covered with stiff, microscopically small, domed hairs. We provide here unique empirical evidence that the tactile receptors associated with these hairs are involved in sensorimo...

متن کامل

A biomimetic robotic platform to study flight specializations of bats

Bats have long captured the imaginations of scientists and engineers with their unrivaled agility and maneuvering characteristics, achieved by functionally versatile dynamic wing conformations as well as more than 40 active and passive joints on the wings. Wing flexibility and complex wing kinematics not only bring a unique perspective to research in biology and aerial robotics but also pose su...

متن کامل

Reducing Versatile Bat Wing Conformations to a 1-DoF Machine

Recent works have shown success in mimicking the flapping flight of bats on the robotic platform Bat Bot (B2). This robot has only five actuators but retains the ability to flap and fold-unfold its wings in flight. However, this bat-like robot has been unable to perform folding-unfolding of its wings within the period of a wingbeat cycle, about 100 ms. The DC motors operating the spindle mechan...

متن کامل

Airplane tracking documents the fastest flight speeds recorded for bats

The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appe...

متن کامل

Inertial Attitude Control of a Bat-like Morphing-wing Micro Air Vehicle

This article presents a novel bat-like micro air vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should maneuver by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015